В теории игр множества коалиций действия и множества коалиций интересов рассматриваются как различные. Легко видеть, что в реальных конфликтах могут встречаться коалиции действия, не являющиеся коалициями интересов, и наоборот.
Рассмотрим, наконец, форму выражения заинтересованности для коалиций интересов. Эта заинтересованность проявляется в том, что каждая из этих коалиций предпочитает одни исходы конфликта другим.
Это описывается в виде некоторого отношения предпочтения — абстрактного бинарного отношения ýк на множестве всех ситуаций. Тот факт, что коалиция интересов К предпочитает ситуацию х ситуации у, обозначается как х ýк у.
Вообще говоря, никаких свойств у отношения ýк не предполагается, хотя обычно оно считается транзитивным
(т.е. из х ýк у и уýк Z следует х ýк Z).
В частности, не требуется, чтобы отношение было линейным, т.е. чтобы любые две ситуации были сравнимы друг с другом (в формальной записи для любых двух различных ситуаций х и у либо х ýк у, либо у ýк х).
Нередко отношение предпочтения задается следующим образом. На множестве ситуаций S определяется функция Hк, принимающая вещественные значения и называемая функцией выигрыша коалиции интересов К. Ее значение Нк (х) понимается как выигрыш, который коалиция К получает в ситуации х. Естественно принять, что х ýк у, если Нк (х) > Нк (у).
Итак, конфликтом (или игрой) называется система
Г= <Âd. í Sк ý к ÎÂd, S, Âи , { ý к } к ÎÂи >
где перечисленные в ломаных скобках множества и отношения связаны друг с другом, как это было описано выше. Математическая теория игр занимается изучением конфликтов (игр) именно в этом понимании.
Смешанная стратегия игрока есть вероятностное распределение на множестве его чистых стратегий.
Пусть дан конфликт (игра) Г
. Говорят, что ситуация (т.е. n-набор стратегий) (si*, s2**, ., sn *) равновесна, или что она является ситуацией равновесия, если для любого i = 1, ., п и для любого s1Î Si имеет место неравенство
.
Другими словами, ситуация равновесна, если ни один игрок не имеет никаких разумных оснований для изменения своей стратегии при условии, что все остальные игроки собираются придерживаться своих стратегий. В этом случае, если каждый игрок знает, как будут играть остальные, он имеет основание придерживаться той стратегии, которая соответствует этой ситуации равновесия; тем самым игра становится весьма устойчивой.
Не все игры имеют ситуацию равновесия. Например, игра в орлянку такой ситуации не имеет.
Если конфликт не имеет ситуаций равновесия, то обычно некоторые игроки пытаются отгадать стратегии остальных участников, сохраняя собственные стратегии в тайне. Что постоянно приводит к нестабильности в развитии взаимодействия. Это наводит на мысль (и это действительно верно), что в конфликтах с полной информацией ситуации равновесия существуют.
Тревожность
Тревожность
-это ожидание неблагоприятного исхода событий или уверенность в неблагоприятном исходе. Основа тревоги - недостаток информации. В отличие от страха тревога не имеет объекта. Т. бывает ситуативной и личностной. Ситуативная Т. свойственна любому человеку. Признаки: сердцебиение, учащенное дыхание, дрожание рук, потоотделение. ...
Отличие восприятия от ощущений
Внешние явления, воздействуя на наши органы чувств, вызывают субъективный эффект в виде ощущений без какой бы то ни было встречной активности субъекта по отношению к воспринимаемому воздействию[1.165].
Способность ощущать дана нам и всем живым существам, обладающим нервной системой с рождения. Способностью же воспринимать мир в виде об ...
Взгляд на проблему школьной неуспеваемости в зарубежной психологии.
Перед современной зарубежной психологией проблема трудности обучения в школе стоит не менее остро, чем перед отечественной. Если в 1977 году в США было около 1,8% детей с трудностями обучения, то к 1993 году их доля составила уже 5,4% (Office of Special Education Programs, U.S. Department of Education, 1993).
Например, проблема минимал ...
Разделы